Fuel Flexibility and Fuel Change in Coal Power Plants

Axel Meschgbiz

Senior Thermal Engineer, RWE Technology International GmbH

Michael Schütz Head of Thermal Engineering, RWE Technology International GmbH

Indo-German Energy Forum – Task Force Flexibility November, 30, 2018 – New Delhi, India

Powering. Reliable. Future.

Agenda

- Introduction
- Fuel Change in Power Plants
- Fuel Handling & Storage
- Milling Challenges
- Combustion and Furnace
- Brief Case Studies

Fuel Change in Power Plants

Quality Requirements on Coals from the view of fuel purchaser and power plant operator

Fuel Purchaser	Power Plant Operator
Low-price purchase	 Handling and storage
Undisturbed transport	Milling and firing
 Universal and low-priced coal input 	 Ignition stability, flame stability
Few restrictions relating to coal qualityBy-products marketing	 Compliance with all limit values of emissions Avoiding mid-term & long-term damages
→ "Price Thinking"	→ "Costs-Thinking"

Fuel characteristics – complete analysis required

Proximate analysis

- H2O, ash and volatile matter (VM)

Calorific value

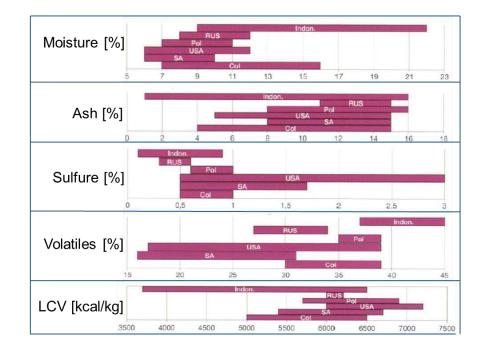
- Lower calorific value, higher calorific value

Elementary analysis

- C, H, N, O, S, CI, F

Ash analysis of macro-elements (XRF)

- SiO₂, Al₂O₃, TiO₂, Fe₂O₃, CaO, MgO, K₂O, Na₂O, P₂O₅, SO₃


Ash fusion trajectory in oxidizing and reducing atmosphere

- Initial deformation temperature (IDT)
- Softening temperature (ST)
- Hemispherical temperature (HT)
- Fluid temperature (FT)
- Grindability (HGI, PMI)
- → Complete analysis gives the whole picture of the combustion behaviour of a fuel

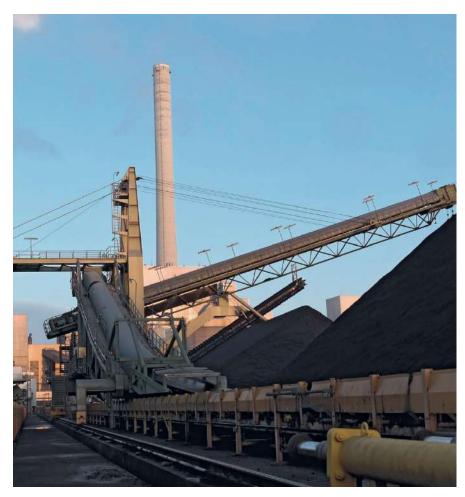
	Co	al Type	Moisture	Heating Value	Volatiles			
UN-EC	USA (ASTM)	Deutschland (DI	N)		(ar %)	(af kJ/kg)	(daf %)	
Peat	Peat	Torf						
Ortho- Lignite	Lignite	WEICHBRAUNKOHLE			75	6,700		
Meta-		Mattbraunkohle			35	16,500		
Lignite Subbitum	Sub- bituminous	Glanzbraunkoble			···· 25 ····	19,000		
Coal	Coal				10	25,000	45	
High Volatile Bituminous Coal Medium Vol. Bitumin. Coal Low Vol. Bitumin. Coal	Flammkohle		ш		50455555	40		
	Gasflammkohle	e	HL			35		
	And the second second second	Gaskohle	teinkohle	TKO		00010994750545		
		Fettkohle		ART	Koksko	ohle36,000	28	
	Low Vol.			I		r	19	
	Bitumin. Coal	Eßkohle				14		
Anthracite Anthracite		Magerkohle			3	36,000	10	
	Anthracite	Anthrazit			-	50,000		

Wide Range of imported Coals

- High quality fluctuations by imported coals
- Analysis of coal quality by independent laboratories
- Analysis of price-oriented characteristics
- Clauses in the supply contract for price regulation by quality fluctuations

Possible effects of changing the Coal Range

Parameter	Major Effects
Calorific value	Coal logistics, Block performance, Heat absorption, Flue gas exit temp. (FEGT)
Water content	Coal logistics, Block performance, Fluid Dynamics at Burner, Flame stability, Exhaust gas temp., ESP Performance
Ash content	Coal logistics, block performance, Flame stability, Ash removal System
Ash composition	Fouling and Slagging, Eutectics, Erosions, Corrosions
Ash Softening Temperature	Fouling and Slagging at FEGT
Volatile components	Self ignition, Flame ignition, Milling process, Dust explosion, Mill explosion
S / CI content	ESP Performance, High temp. corrosion, FGD, Gypsum quality
Grindability	Milling process, fines at Burners, Burnout


Impact of Fuel Properties to Power Plant Operation (Matrix)

	design and operation												
	coal transport	coal storage area	coaling	mills	burner	firing	ash-removal	air preheater	electric filter	desulphurisation	ash transport and storage	pollution	Σ
moisture	X	X	Х	Х	X	X		x	x	Х			9
ash							X	X	X		X	x	5
ash composition				х		X	х	x	x		X	X	6
volatiles	X	X	х	X	x	X			X				7
sulphur	-	_		x		x		x	x	X		x	6
fixed carbon					X	x						x	3
chlorine		-				x							1
HGI	1			х	х	x							3
ash composition volatiles sulphur fixed carbon chlorine HGI size distribution	x	x	X	x		X							4
3 NCV	X	X	Х	x	X								5
ash melting behaviour						x							1
macerals	1			x	X	X			x				4

important coal quality parameters

exception regulation

Fuel Handling & Storage

Fuel Handling and Storage

Transport

- > Coals which tend to get hot during shipment should be avoided.
- > The heating-up process will continue in the Stock pile or Silo

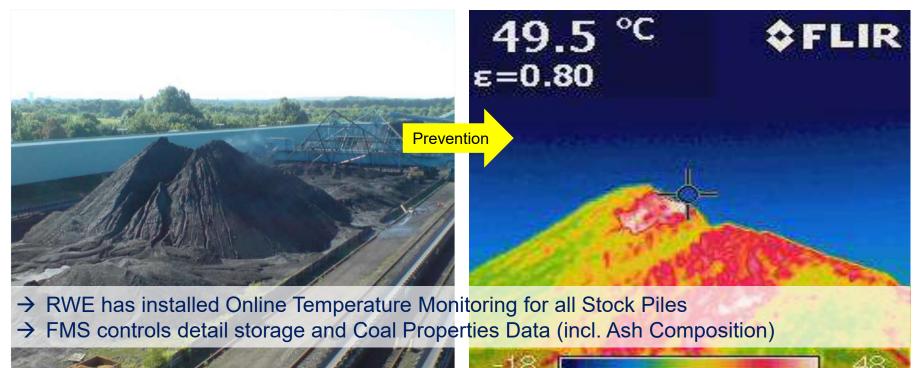
Storage

Coal Silo

- > Blending of different coals is limited (last in, first out)
- > Protected against sun and rain, no dust pollution

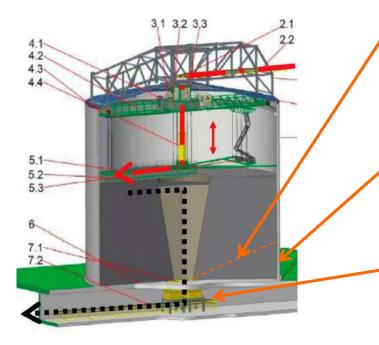
Coal Yard

- Most common praxis for older plants and plants far from residential areas
- > During unloading, the coarse parts roll down, which can cause undefined blending


Handling

- For all storage solutions a FMS (Fuel Management System) is required in order to blend the coals if required
- > Some SBC tend to self ignition. Therefore Temperature monitoring is required
- > Area with a potential of Dust explosion must be cleaned frequently

Stock Pile


Smouldering Stock Pile after Fire Fighting

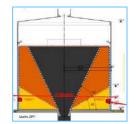
Temperature Monitoring

Coal Silo - Problem Zones

The following components encountered problems during operation:

Slope angle < 36 °

Hotspots are created in the edge area up to approx. 2 m away from the silo wall, the area with the lowest compaction of the stored material \rightarrow This creates sufficient cavities for volatiles and air for self ignition and smouldering fire


Maintenance door (leaking frame)

Between the outer edges of the steel frame of the mounting door and the concrete was located around a clear air gap \rightarrow Cause of smouldering fire

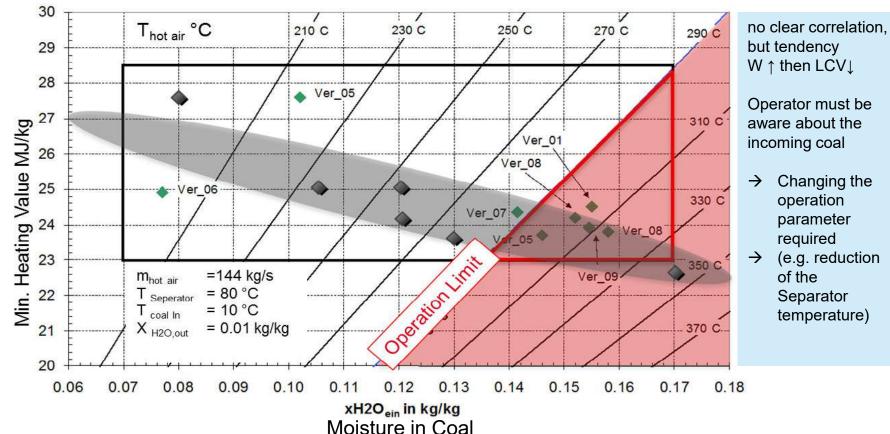
Leaky flat slide

During a longer standstill a smouldering fire occurred by entering Oxygen in the discharge area \rightarrow Cause of smouldering fire

 \rightarrow Cause of smouldering fire

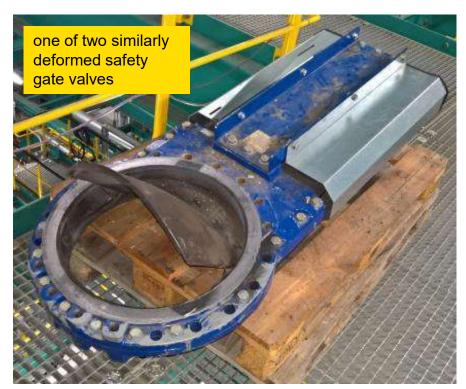

Lesson Learned

Prevention


- Complete analysis of the process (operation and standstill)
- Rejecting high risk coals in an early stage
- Concepts for fire extinguishing
- Detection of potential areas of dust explosion
- Sensitizing the crew to the dangers and risks **Solution**
- Installing suitable early warning systems (software & hardware)
- Continuous monitoring of the determined problem zones
- Installing FMS and fire fighting systems
- inertisation with N2, separation of hazardous area
- Regular cleaning of areas with fine dust deposits
- Instructions and training the operation and maintenance staff **Benefits**
- Reducing the unforeseen outages and costs
 - → Guideline to prevent smouldering and dust explosions for Coal Handling

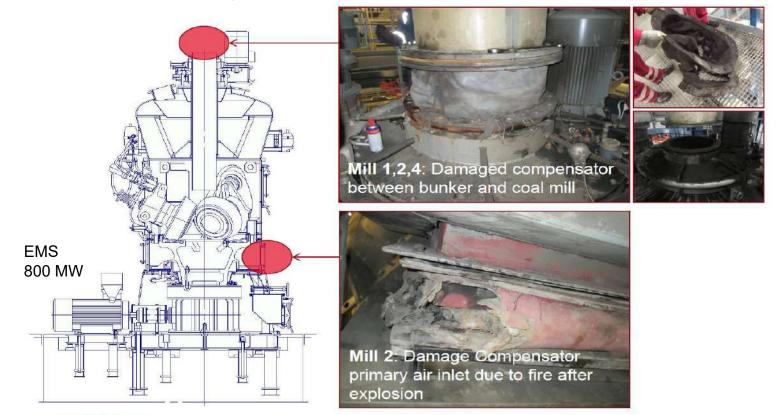
Milling Challenges

When the Mill Design limit is exceeded


ΒK 608 MW

Mill Damage during Operation

 \rightarrow During operation with lower rank coal mill explosion happened


In close range mill 4 high heat radiation

Damage on mill by explosion at Standstill

 \rightarrow After unforeseen outage 3 mill explosions happened in a time period of 45 min

Explosion Suppression System at the Mills

 \rightarrow Suppression Systems have been installed utilizing High Volatile Coals and Biomass

Fuel Flexibility and Fuel Change in Coal Power Plants

Mill damage by foreign objects

→ Impurities in imported coal caused minor and major damaged in the mill (mostly Russian coal)

WES 800 MW

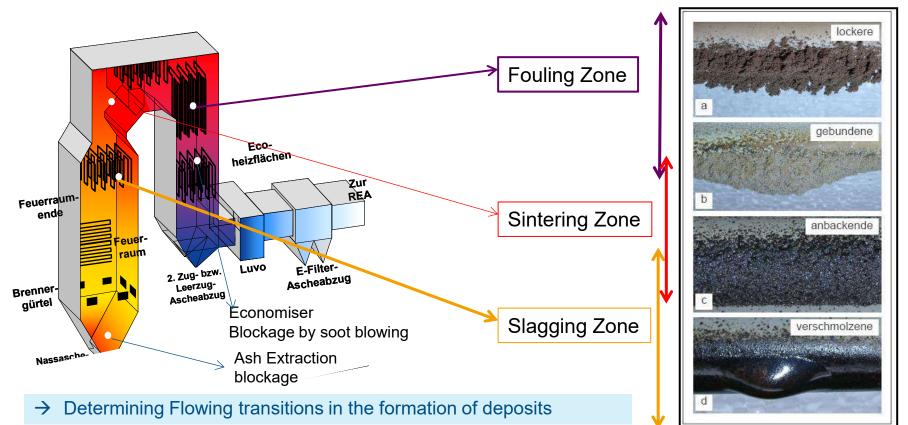
Measures to avoid Mill Explosion

Prevention

- Analysis of the process and re-calculation of the mills regarding incoming coals
- Rejecting high risk coals in an early stage
- Preparing a catalogue of the properties for the imported coals
- Sensitizing the crew to the dangers and risks

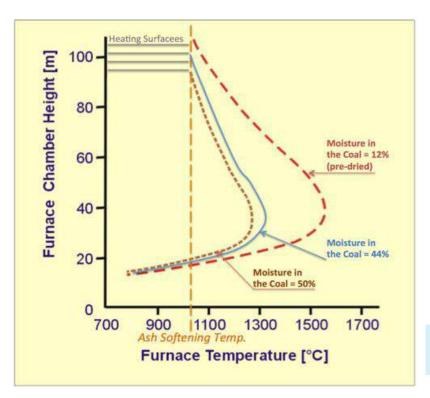
Solution

- Continuous monitoring of the determined problem zones in the mill
- Avoiding coals with a volatile content over a certain value (e.g. 39%)
- Adapting the operation parameters to the particular coal (e.g. reduction classifier temp.)
- Sufficient steam injection after shut down of the mills
- Installing of fire fighting systems
- Detailed operation and maintenance Instructions
- Training the staff


Benefits

- Reduction of unforeseen outages and risk of human injuries.
- → VGB Guideline has been created to prevent explosions in the coal mills

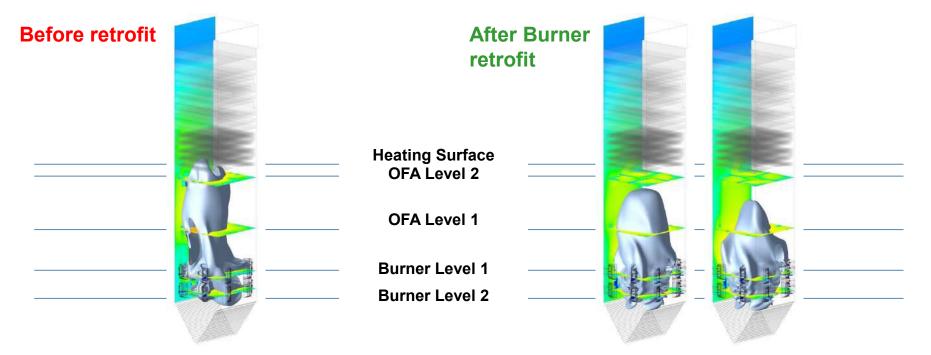
Combustion and Furnace



Fouling and Slagging is a major Issue

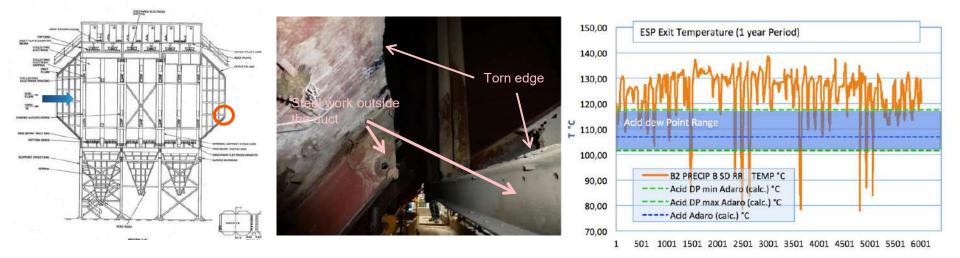
Furnace Temperature Distribution and FEGT (Example Moisture)

 \rightarrow

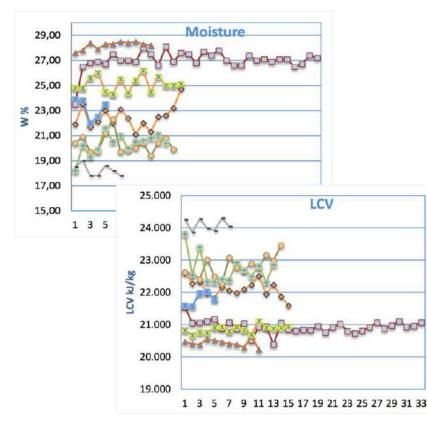

Sintering at the first Heating Surface

ISO-Thermal surface of 1100 °C in the Furnace (Retrofit of a 600 MW_o unit based of CFD Calculations)

FEGT > Ash Softening Point = 1100°C


FEGT << Ash Softening Point = 1100°C

Brief Case Studies



ESP Corrosion (700 MW_e Hard Coal Plant, South China)

→ Due to combustion of particular imported coals the flue gas temp. is critically close to the acid dew point and in some periods bellow it

Improved Operation of thermal fleet

Snapshot

Client	Location
Chinese Power Utility	South China

Challenge

RWE-TI carried out several consultancy services, aiming solve combustion and O&M problems

Solution

Complete analysis of the fuels, combustion process, operation data and installations. Optimization the of O&M process

Benefits

The proposed optimization measures allowed to avoid unforeseen outages when utilizing a wider range of coals

Improved combustion of a thermal fleet

Snapshot

Client Malakoff Corporation Berhad

Location Malaysia

Challenge

For one of the leading IWPP companies in South-East Asia, RWE-TI carried out several consultancy services, aiming to boost efficiency of their existing coal-fired power plants.

Solution

This included complete analysis of the combustion system, processes and adjacent installations. We focused on the design and operational performance data.

Benefits

The proposed optimization measures allowed for <u>longer outage</u> intervals and utilizing a wider range of coals.

Thank you very much for your attention

Powering. Reliable. Future.

RWE

Fuel Flexibility and Fuel Change in Coal Power Plants